Search results for "MESH : Oxidation-Reduction"

showing 10 items of 11 documents

Screening of lactic acid bacteria for reducing power using a tetrazolium salt reduction method on milk agar.

2013

WOS:000315703100020 ; www.elsevier.com/locate/jbiosc; International audience; Reducing activity is a physiological property of lactic acid bacteria (LAB) of technological importance. We developed a solid medium with tetrazolium dyes enabling weakly and strongly reducing LAB to be discriminated. It was used to quantify populations in a mixed culture (spreading method) and screen strains (spot method).

MESH: Oxidation-Reduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionTetrazolium Saltstetrazolium saltApplied Microbiology and Biotechnologychemistry.chemical_compoundAgarMESH: AnimalsFood science0303 health sciencesbiologyplate media04 agricultural and veterinary sciencesMESH: Tetrazolium SaltsSolid mediumLactic acidMilkMESH: AgarBiochemistryLactobacillaceaeMESH : AgarFormazanOxidation-ReductionBiotechnologyfood.ingredientMESH: LactobacillaceaeSpot methodBioengineering03 medical and health sciencesfoodoxidoreduction potentialMixed culturereducing powerAnimalsLactic AcidMESH : Tetrazolium SaltsMESH : Oxidation-Reduction030306 microbiologyscreeningMESH : Lactobacillaceae0402 animal and dairy scienceOxidation reductionbiology.organism_classification040201 dairy & animal scienceCulture MediaMESH: Milklactic acid bacteriaAgarchemistryMESH : MilkMESH : Lactic AcidMESH: Culture MediaMESH: Lactic AcidMESH : Culture MediaMESH : Animals[SDV.AEN]Life Sciences [q-bio]/Food and NutritionBacteria
researchProduct

Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders…

2009

International audience; In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oli…

Proteolipid protein 1BiochemistryMiceMyelinMESH : PhenylbutyratesperoxisomeIsomerasesMESH : Myelin Basic ProteinsEnoyl-CoA HydrataseCell Line TransformedUltrasonographybiologyMESH : Gene Expression RegulationMESH : Myelin Proteolipid Protein3-Hydroxyacyl CoA DehydrogenasesMESH : Myelin-Associated GlycoproteinMESH : Cell Line TransformedPeroxisomeMESH : Multienzyme ComplexesMESH : OligodendrogliaMESH : Enoyl-CoA HydrataseCatalaseFlow CytometryMESH : 3-Hydroxyacyl CoA DehydrogenasesPhenylbutyratesmitochondriaMyelin-Associated GlycoproteinOligodendrogliamyelinMESH : Antineoplastic Agentsmedicine.anatomical_structureMESH : Microscopy Electron TransmissionBiochemistryACOX1MESH : MitochondriaMESH : Acyl-CoA Oxidase2'3'-Cyclic-Nucleotide PhosphodiesterasesMESH : IsomerasesOxidation-ReductionMyelin ProteinsMESH : Flow CytometryAntineoplastic AgentsPeroxisomal Bifunctional EnzymeStatistics NonparametricMyelin oligodendrocyte glycoproteinCellular and Molecular NeuroscienceMicroscopy Electron TransmissionMultienzyme ComplexesMESH : CatalaseMESH : MicePeroxisomesmedicineAnimalsMESH : ATP-Binding Cassette TransportersMyelin Proteolipid ProteinMESH : Statistics Nonparametric[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH : Oxidation-ReductionMyelin Basic Proteinmurine oligodendrocytesMESH : 2'3'-Cyclic-Nucleotide PhosphodiesterasesPeroxisomal transportOligodendrocyteMyelin basic proteinGene Expression Regulationbiology.proteinATP-Binding Cassette TransportersMyelin-Oligodendrocyte GlycoproteinAcyl-CoA OxidaseMESH : AnimalsMESH : Peroxisomes
researchProduct

A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver.: ThB …

2011

International audience; Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal β-oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). Here, we show that the magnitude of Wy-mediated induction of peroxisomal β-oxidation of radiolabeled (1-(14)C) palmitate was significantly reduced in mice deficient for Thb. In contrast, mitochondrial β-oxidation was unaltered in Thb(-/-) mice. Given that Wy-treatment induced Acox1 and MFP-1/-2 activity at a similar level in both genotypes, we concluded that the thiolase step alone was respons…

MaleMESH: HepatomegalyPalmitatesMESH : PyrimidinesMESH : Gene DeletionBiochemistryelement-binding proteinsMESH : Acetyl-CoA C-AcyltransferaseMiceMESH: Up-RegulationMESH: AnimalsMESH : Up-RegulationMESH: Lipid Metabolism0303 health sciencesMESH : Gene Expression RegulationThiolase030302 biochemistry & molecular biologyGeneral MedicineMESH : HepatomegalyUp-Regulationzellweger-syndromePeroxisome ProliferatorsMESH: Peroxisome ProliferatorsHepatomegalySterol Regulatory Element Binding Protein 2peroxisomal 3-ketoacyl-CoA thiolase BMESH: Mitochondria3-oxoacyl-coa thiolaseLathosterolfatty-acid oxidationrat-liverMESH: Sterol Regulatory Element Binding Protein 203 medical and health sciencesMESH : Sterol Regulatory Element Binding Protein 2HumansPPAR alphaMESH : Peroxisome Proliferators[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPPARaVLAGMESH : Oxidation-ReductionFatty Acid Oxidation.MESH: HumansCholesterolMESH : HumanscholesterolLipid MetabolismMESH: PeroxisomesSterol regulatory element-binding proteinchemistryMESH: PyrimidinesCholesterol; Micro-array analysis; Peroxisomal 3-ketoacyl-CoA thiolase B; PPARα and SREBP-2; Wy14643Fatty Acid OxidationGene DeletionMESH: LiverMESH: Oxidation-ReductionMESH: Signal TransductionMESH: Mice KnockoutVoeding Metabolisme en Genomicachemistry.chemical_compoundMESH: CholesterolMESH : Lipid MetabolismWy14MESH : PalmitatesMESH: PPAR alphaMESH : CholesterolMice Knockoutneuronal migration643PeroxisomeAcetyl-CoA C-AcyltransferaseMESH: Gene Expression RegulationMetabolism and GenomicsMitochondriaLiverBiochemistryMicro-array analysisMetabolisme en GenomicaACOX1Nutrition Metabolism and GenomicsMESH : MitochondriaOxidation-ReductionSignal Transductionacyl-coa oxidasecholesterol-synthesisMESH : MaleMESH : PPAR alphaPeroxisome ProliferationPPARα and SREBP-2Biologybeta-oxidationVoedingproliferator-activated receptorsMESH : MicePeroxisomesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Mice030304 developmental biologySCP2NutritionMESH : Signal TransductionMESH : LiverMESH: PalmitatesMESH: MalePyrimidinesMESH: Acetyl-CoA C-AcyltransferaseGene Expression RegulationMESH: Gene DeletionMESH : Mice KnockoutMESH : AnimalsMESH : Peroxisomes
researchProduct

Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.

2012

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice…

MESH: Oxidation-Reduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and MetabolismGlucose uptakeAMP-Activated Protein KinasesInbred C57BLMice0302 clinical medicineAMP-activated protein kinaseMESH : Lipid MetabolismHyperinsulinemiaMESH: AnimalsMESH: AMP-Activated Protein KinasesMESH : Muscle SkeletalMESH : Fatty AcidsBeta oxidationMESH: Lipid Metabolism0303 health sciencesMESH: Muscle SkeletalbiologyMESH : Diet High-FatFatty AcidsMESH: Energy MetabolismMESH : AMP-Activated Protein KinasesMESH: Mitochondria MuscleSkeletal3. Good healthApelinMitochondriaMESH: Fatty AcidsMESH : Cyclic AMP-Dependent Protein KinasesMESH: Insulin ResistanceAlimentation et NutritionApelinIntercellular Signaling Peptides and ProteinsMuscleMESH : Insulin ResistanceOxidation-Reductionmedicine.medical_specialtyMESH : Mitochondria Muscle030209 endocrinology & metabolismMESH : Mice Inbred C57BLMESH: Cyclic AMP-Dependent Protein KinasesDiet High-Fat03 medical and health sciencesInsulin resistanceAdipokinesMESH: Mice Inbred C57BLInternal medicineMESH : MiceInternal MedicinemedicineFood and NutritionAnimalsMuscle SkeletalMESH: Intercellular Signaling Peptides and ProteinsMESH: MiceMESH : Intercellular Signaling Peptides and Proteins030304 developmental biologyMESH : Oxidation-ReductionAMPKmedicine.diseaseLipid MetabolismCyclic AMP-Dependent Protein KinasesMitochondria MuscleDietMice Inbred C57BLMESH : Energy Metabolism[SDV.AEN] Life Sciences [q-bio]/Food and NutritionAMP-Activated Protein Kinases;Animals;Cyclic AMP-Dependent Protein Kinases;Diet;High-Fat;Energy Metabolism;Fatty Acids;Insulin Resistance;Intercellular Signaling Peptides and Proteins;Lipid Metabolism;Mice;Inbred C57BL;Mitochondria;Muscle;Skeletal;Oxidation-ReductionHigh-FatMESH: Diet High-FatMetabolismEndocrinologyMitochondrial biogenesisbiology.proteinMESH : AnimalsInsulin ResistanceEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential.

1999

International audience; The pH homeostasis and proton-motive force (Deltap) of Escherichia coli are dependent on the surrounding oxidoreduction potential (ORP). Only the internal pH value and, thus, the membrane pH gradient (DeltapH) component of the Deltap is modified, while the membrane potential (DeltaPsi) does not change in a significant way. Under reducing conditions (Eh < 50 mV at pH 7.0), E. coli decreases its Deltap especially in acidic media (21% decrease at pH 7.0 and 48% at pH 5.0 for a 850-mV ORP decrease). Measurements of ATPase activity and membrane proton conductance (CH+m) depending on ORP and pH have shown that the internal pH decrease is due to an increase in membrane prot…

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationMembrane permeabilitymedicine.disease_causeBiochemistryMembrane Potentials03 medical and health sciencesMESH : Hydrogen-Ion Concentration[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineEscherichia coliMESH: Adenosine TriphosphatasesMESH : Membrane PotentialsMESH : ProtonsMESH: Membrane Potentials[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-ReductionMembrane potentialchemistry.chemical_classificationAdenosine Triphosphatases0303 health sciencesChromatographyMESH : Adenosine Triphosphatases030306 microbiologyChemiosmosisChemistryMESH: Escherichia coliConductanceHydrogen-Ion Concentration[INFO.INFO-BT] Computer Science [cs]/BiotechnologyMembranePermeability (electromagnetism)BiophysicsThiolMESH: ProtonsProtonsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/Biotechnology
researchProduct

Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli.

2000

ABSTRACT Wild-type Escherichia coli K-12 ferments glucose to a mixture of ethanol and acetic, lactic, formic, and succinic acids. In anoxic chemostat culture at four dilution rates and two different oxidoreduction potentials (ORP), this strain generated a spectrum of products which depended on ORP. Whatever the dilution rate tested, in low reducing conditions (−100 mV), the production of formate, acetate, ethanol, and lactate was in molar proportions of approximately 2.5:1:1:0.3, and in high reducing conditions (−320 mV), the production was in molar proportions of 2:0.6:1:2. The modification of metabolic fluxes was due to an ORP effect on the synthesis or stability of some fermentation enzy…

MESH : Models Chemical0106 biological sciencesMESH: Oxidation-ReductionMESH : Acetic AcidMESH : Escherichia coliMESH : NADFormatesOxaloacetatesMESH: Phosphoenolpyruvate CarboxylaseSuccinic AcidMESH: Alcohol DehydrogenaseMESH : CarbonMESH : EthanolMESH: Carbon Dioxide01 natural sciencesPhosphoenolpyruvatechemistry.chemical_compoundModels[INFO.INFO-BT]Computer Science [cs]/BiotechnologyAcetic Acid0303 health sciencesbiologyMESH: Escherichia coliMESH: Models ChemicalMESH : Acetyl Coenzyme AMESH: NADLactic acidMESH : Carbon DioxideBiochemistryFormic AcidsMESH: PhosphoenolpyruvateMESH: Acetic AcidMESH: Pyruvate KinaseMESH : Phosphoenolpyruvate CarboxylaseMESH: Oxaloacetic AcidsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: EthanolPhysiology and MetabolismPyruvate KinaseElectronsChemicalMESH: CarbonMESH : Formic AcidsChemostatMicrobiologyMESH: Fermentation03 medical and health sciencesAcetic acidMESH : Alcohol DehydrogenaseAcetyl Coenzyme AMESH : Fermentation010608 biotechnology[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliFormate[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyLactic Acid[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology030304 developmental biologyAlcohol dehydrogenaseMESH : Oxidation-ReductionMESH: ElectronsEthanolEthanolMESH : Succinic AcidAlcohol DehydrogenaseCarbon DioxideNADMESH: Formic AcidsMESH : Pyruvate KinaseCarbonOxaloacetic AcidsPhosphoenolpyruvate CarboxylaseMESH: Succinic Acid[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryModels ChemicalSuccinic acidMESH : Lactic AcidMESH : Oxaloacetic AcidsFermentationbiology.proteinFermentationMESH: Lactic AcidMESH : ElectronsMESH : PhosphoenolpyruvateMESH: Acetyl Coenzyme A
researchProduct

Influence of substrate oxidation on the reward system, no role of dietary fibre.

2011

International audience; It has been suggested that a high intake of dietary fibre helps regulate energy intake and satiety. The present study aimed to examine whether dietary fibre influenced the liking and wanting components of the food reward system, the metabolic state or subsequent intake. Five sessions involving 32 normal-weight subjects (16 men and 16 women, 30.6 ± 7.6 year) were held. The sessions differed in the composition of the bread eaten during breakfasts (dietary fibre content varied from 2.4 to 12.8 g/100 g). Several factors such as the palatability, weight, volume, energy content and macronutrient composition of the breakfasts were adjusted. Energy expenditure, the respirato…

Dietary FiberMaleMESH: Oxidation-ReductionMESH: Dietary Carbohydrates030309 nutrition & dietetics[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionsatietyAppetiteMESH: Food HabitsMESH: Energy IntakeChoice BehaviorMESH: EatingEatingIngestionMESH : FemaleFood sciencePalatabilityMESH : Body WeightGeneral PsychologyMESH : Food Habitsmedia_commonMorning2. Zero hunger0303 health sciencesMESH : Food PreferencesNutrition and Dieteticsdietary fibre05 social sciencesdigestive oral and skin physiologyMESH: Energy MetabolismMESH : Feeding BehaviorBreadMESH : AdultMESH : Dietary Carbohydratesreward systemMESH: Young AdultMESH: Feeding BehaviorFemalePsychologyOxidation-Reductionfood preferencesMESH : AppetiteAdultMESH : EatingMESH : Malemedia_common.quotation_subjectMESH : Young AdultSatiationMESH: Choice BehaviorMESH: BreadYoung Adult03 medical and health sciencesReward systemsensation de faimMESH : Choice BehaviorDietary CarbohydratesHumans0501 psychology and cognitive sciences050102 behavioral science & comparative psychologyMESH: Food PreferencesMESH : Oxidation-ReductionMESH: HumansMESH: SatiationMESH : HumansBody WeightDietary fibreMESH : Energy IntakeAppetiteMESH: AdultFeeding BehaviorMESH: MaleMESH: Body WeightMESH : Energy MetabolismRespiratory quotientMESH: Dietary FiberEnergy densityMESH: AppetiteMESH : Dietary FiberEnergy IntakeEnergy MetabolismMESH : BreadmetabolismMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Satiation
researchProduct

Peroxisomal beta-oxidation activities and gamma-decalactone production by the yeast Yarrowia lipolytica.

1998

International audience; gamma-Decalactone is a peachy aroma compound resulting from the peroxisomal beta-oxidation of ricinoleic acid by yeasts. The expression levels of acyl-CoA oxidase (gene deletion) and 3-ketoacyl-CoA thiolase activities (gene amplification on replicative plasmids) were modified in the yeast Yarrowia lipolytica. The effects of these modifications on beta-oxidation were measured. Overexpression of thiolase activity did not have any effect on the overall beta-oxidation activity. The disruption of one of the acyl-CoA oxidase genes resulted in an enhanced activity. The enhancement led to an increase of overall beta-oxidation activity but reduced the gamma-decalactone produc…

MESH: Oxidation-ReductionRicinoleic acidMESH: MicrobodiesMicrobodiesApplied Microbiology and BiotechnologyAROME DE PECHELactoneschemistry.chemical_compoundMESH : BiotransformationYeastsMESH : Microbodies[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAcyl-CoA oxidaseMESH: Blotting NorthernNorthern[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyBiotransformationMESH : Oxidation-ReductionMESH: BiotransformationMESH : YeastsOxidase testbiologyBlottingCatabolismThiolaseMESH: YeastsMESH : Blotting NorthernYarrowiaGeneral MedicinePeroxisomeBlotting Northernbiology.organism_classificationYeastMESH : LactonesMESH: Ricinoleic Acids[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyBiochemistrychemistryMESH : Ricinoleic AcidsACYL COA OXYDASERicinoleic AcidsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesBiotechnology
researchProduct

Combined action of redox potential and pH on heat resistance and growth recovery of sublethally heat-damaged Escherichia coli

2000

International audience; The combined effect of redox potential (RP) (from -200 to 500 mV) and pH (from 5.0 to 7.0) on the heat resistance and growth recovery after heat treatment of Escherichia coli was tested. The effect of RP on heat resistance was very different depending on the pH. At pH 6.0, there was no significant difference, whereas at pH 5.0 and 7.0 maximum resistance was found in oxidizing conditions while it fell in reducing ones. In sub-lethally heat-damaged cells, low reducing and acid conditions allowed growth ability to be rapidly regained, but a decrease in the redox potential and pH brought about a longer lag phase and a slower exponential growth rate, and even led to growt…

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationHot TemperatureThermal resistanceMESH: Hot Temperaturemedicine.disease_causeApplied Microbiology and BiotechnologyRedox03 medical and health sciencesExponential growthMESH : Hydrogen-Ion Concentration[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyOxidizing agentEscherichia colimedicineGrowth rate[INFO.INFO-BT]Computer Science [cs]/Biotechnology[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-Reduction0303 health sciencesbiologyMESH: Escherichia coli030306 microbiologyChemistryGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationEnterobacteriaceaeCulture Media[INFO.INFO-BT] Computer Science [cs]/Biotechnology[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiochemistryMESH: Culture MediaBiophysicsMESH : Culture MediaMESH : Hot TemperatureOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyBacteriaBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Effects of oxidoreduction potential combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobac…

2002

International audience; The effects of oxidoreduction potential (Eh) combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobacillus plantarum were studied. The culture medium was set at pH 5, and two different Eh values were adjusted using nitrogen (Eh = +350 mV) or hydrogen (Eh = -300 mV) gas. In reducing condition, the growth was slowed and the acidification delayed at 37 degrees C, but not at 10 degrees C. A synergistic inhibitory effect of reducing Eh, acetic acid and NaCl was observed, mainly for delaying the lag phase before acidification. These results may be explained by changes in ATPase activity, membrane fluidity and surface…

MESH: Oxidation-ReductionMESH : Acetic AcidMESH: Sodium ChlorideHydrogenMembrane FluiditySodiumInorganic chemistrychemistry.chemical_elementMESH : Membrane Fluidity[SDV.BC]Life Sciences [q-bio]/Cellular BiologySodium ChlorideMicrobiologyAcetic acidchemistry.chemical_compoundLactobacillusGeneticsMembrane fluidity[INFO.INFO-BT]Computer Science [cs]/BiotechnologyMolecular BiologyMESH : Temperature[SDV.BC] Life Sciences [q-bio]/Cellular BiologyAcetic AcidMESH : Oxidation-Reductionbiology[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyTemperaturebiology.organism_classificationNitrogenMESH: TemperatureCulture MediaMESH : Sodium ChlorideLactobacillusMembrane[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH: Acetic AcidMESH: Culture MediaMESH : Culture MediaMESH : LactobacillusOxidation-ReductionMESH: LactobacillusLactobacillus plantarum[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: Membrane FluidityNuclear chemistry
researchProduct